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Metal-Enhanced Fluorescence Solution-Based

Sensing Platform
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In recent years our laboratories have reported the favorable effects for fluorophores placed in close
proximity to surface immobilized silver nanostructures. These include; greater quantum yields, re-
duced lifetimes (increased photostability) and directional emission. However, while these findings
are likely to find multifarious applications for surface assays based on enhanced fluorescence detec-
tion, a solution based enhanced sensing platform has yet to be realized. In this short, note, we show
how SiO,-coated silver colloids, indeed provide for a solution based enhanced fluorescence sensing
platform with a 3-5 fold enhancement typically observed.

KEY WORDS: Radiative decay engineering; metal-enhanced fluorescence; solution assays.

Recently our laboratories have fabricated numerous
noble-metal surfaces for metal-enhanced fluorescence de-
tection whereby fluorophores can undergo modifications
in their radiative decay rate, I', Fig. 1 [1-8]. Silver island
films (SiFs), formed an APS-coated glass slides by the re-
duction of silver nitrate by glucose, have proved a versatile
surface, providing up-to 10 fold increases in fluorescence
signal of appropriate fluorophores [1-5]. Silver colloid
coated surfaces have yielded up-to 50-fold enhancements
[6], while silver-fractal-like coatings have been shown to
increase fluorescein emission, several thousand fold [7,8].
These findings have been most encouraging and suggest
the use of metallic nanostructures in surface assays and
high-throughput screening plate-well formats. However,
to date, little attention has been given to solution-based
systems. This is in part due to the complexities associated
with working with nano-or picomolar concentrations of
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silver colloids, their purification, and comparison with an
appropriate control system, i.e. a sample with no silver.
In this short note, we show that 3- to 5-fold enhanced
fluorescence signals can be obtained from SiO,-coated sil-
ver colloids labeled with Cy3 and by their aggregation in
suspension. This inert coating alleviates the close proxim-
ity quenching by noble-metals [1,9], as well as provides for
a wide variety of chemistries for biomolecule attachment.
The preparation of silica-coated silver spheres and
biotinylation of the silica coated silver spheres in sus-
pension is performed in multiple steps. Firstly, the silver
spheres were prepared in solution. In this regard, 2 mL of
1.16 mM trisodium citrate solution was added drop wise to
a heated (95°C) aqueous solution of 0.65 mM of AgNO;
while stirring. The mixture was kept heated for 10 min,
and then it was cooled to room temperature. This proce-
dure yields silver spheres with sizes in the range of 30 to
80 nm. The surface of the silver spheres were modified
with 3-(aminopropyl)ethoxysilane (APS) in ethanol. The
APS-coated silver spheres were resuspended in a predeter-
mined amount of water and NH4OH. Then, a solution of

ABBREVIATIONS: TEOS, tetraethylorthosilicate; BSA, bovine serum
albumin; MEF, metal-enhanced fluorescence; RDE, radiative decay
engineering; Cy 3, N,N’(dipropyl)-tetramethylindodicarbocyanine;
TEM, transmission electron micrograph.
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Fig. 1. Classical Jablonski diagram for the free space condition and the modified form in
the presence of metallic particles, islands, colloids or silver nanostructures. E-excitation, Ey,,

Metal-enhanced excitation rate; I'y,, radiative rate in the presence of metal.

tetraethylorthosilicate (TEOS) was rapidly injected, the
reaction continuing for a period of time to control the
thickness of the SiO; coating layer. The amount of TEOS
was calculated based on the total area of silver spheres
and the desired shell thickness, assuming complete con-
version of TEOS tosilica (Fig. 2). Figure 2 (Bottom) shows
a typical TEM image of the silica-coated silver spheres.
Silica-coated silver spheres were then biotinylated by in-
cubating the silver spheres in a micro molar solution of
biotinylated-BSA (BSA-biotin) overnight. The coated sil-
ver spheres were separated from the unbound BSA-biotin
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by centrifugation and were resuspended in deionized
water.

In order to demonstrate that the silica-coated silver
spheres can result in metal-enhanced fluorescence upon
their close proximity, i.e. a combination of both a radia-
tive rate modification and enhanced electric field effect
[1-5], we have utilized the well-known biotin-streptavidin
interactions. These interactions occur in relatively fast re-
action times (20 min) and is one of the strongest biolog-
ical interactions found in nature (dissociation constant,
Kp = 10715 M). For this purpose, we have aggregated the
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Fig. 2. Experimental procedure for coating of silver spheres with silica (Top), and TEM
image of silica coated-silver spheres (Bottom).
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Fig. 3. Experimental procedure for coating of silver spheres with
biotinylated-BSA and aggregation of silica-coated silver spheres with
Cy3-labeled streptavidin.

biotinylated-silver spheres with Cy3-labeled streptavidin
(Fig. 3).

Figure 4 shows the fluorescence emission intensities
recorded from the aggregated biotinylated-silver spheres
(no label) and from the non-aggregated biotinylated-silver
spheres, control samples, C1 and C2, respectively, where
can typically see a slight fluorescence signal from the con-
trol samples.

However, aggregation of the labeled biotinylated-
silver spheres resulted in an approximately 3- to 5-fold
higher fluorescence intensity than the non-aggregated sys-
tem or the aggregated system with no label. This was
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Fig. 4. Fluorescence emission intensity recorded from the aggregated
silica-coated silver spheres (Samples 3—6), and control samples (Samples
Cl1-2).

repeated several times, samples 3—6, and in an every case
atypically greater signal was observed for the Cy3 labeled
aggregated SiO; coated colloids.

Interestingly, the Cy3 lifetime was also significantly
reduced from ~1.3 ns to a value too short to measure on
the employed instrumentation. An increase in fluorescence
signal, accompanied by a reduced lifetime, can only be
explained by a radiative rate modification [1-8].

CLOSING REMARKS

In this short note we have reported for the first time
how SiO, coated silver colloids can be used to provide
for a metal-enhanced fluorescence sensing platform. It is
likely that other sensing schemes, based on the aggregation
and/or disassociation of silver nanostructures can also be
realized. The additional use of a SiO, coating as described
here, provides for both surface nanostructure functional-
ity, protection of the surface plasmon absorption, and a
coating to distance fluorophores from close-range metal
quenching [1,9].
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